Technological watch

Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro? and Nanoswimmers: A Review

Over the last decades, micro? and nanoswimmers (MNSs) is intensively studied due to their potential to address biomedical challenges. However, their degradation in human physiological media, which significantly affects their stability and functionality, is often overlooked. Therefore, this review analyzes the factors influencing the degradation of MNSs and discusses strategies to design MNSs with appropriate degradation rates.The last two decades have witnessed the emergence of micro? and nanoswimmers (MNSs). Researchers have invested significant efforts in engineering motile micro? and nanodevices to address current limitations in minimally invasive medicine. MNSs can move through complex fluid media by using chemical fuels or external energy sources such as magnetic fields, ultrasound, or light. Despite significant advancements in their locomotion and functionalities, the gradual deterioration of MNSs in human physiological media is often overlooked. Corrosion and biodegradation caused by chemical reactions with surrounding medium and the activity of biological agents can significantly affect their chemical stability and functional properties during their lifetime performance. It is therefore essential to understand the degradation mechanisms and factors that influence them to design ideal biomedical MNSs that are affordable, highly efficient, and sufficiently resistant to degradation (at least during their service time). This review summarizes recent studies that delve into the physicochemical characteristics and complex environmental factors affecting the corrosion and biodegradation of MNSs, with a focus on metal?based devices. Additionally, different strategies are discussed to enhance and/or optimize their stability. Conversely, controlled degradation of non?toxic MNSs can be highly advantageous for numerous biomedical applications, allowing for less invasive, safer, and more efficient treatments.

Publication date: 13/07/2023

CIDETEC (Artículos)


This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870292.