Technological watch

Emission of greenhouse gases due to anthropogenic activities: an environmental assessment from paddy rice fields

Paddy rice fields (PRFs) are a potent source of global atmospheric greenhouse gases (GHGs), particularly CH4 and CO2. Despite socio-environmental importance, the emission of GHGs has rarely been measured from Haryana agricultural fields. We have used new technology to track ambient concentration and soil flux of GHGs (CH4, CO2, and H2O) near Karnal’s Kuchpura agricultural fields, India. The observations were conducted using a Trace Gas Analyzer (TGA) and Soil Flux Smart Chamber over various parts, i.e., disturbed and undisturbed zone of PRFs. The undisturbed zone usually accounts for a maximum ambient concentration of?~?2434.95 ppb and 492.46 ppm of CH4 and CO2, respectively, higher than the average global concentration. Soil flux of CH4 and CO2 was highly varied, ranging from 0.18 to 11.73 nmol m?2 s?1 and 0.13–4.98 ?mol m?2 s?1, respectively. An insignificant correlation was observed between ambient concentration and soil flux of GHGs from PRFs. Waterlogged (i.e., irrigated and rain-fed) soil contributed slightly lower CH4 flux to the atmosphere. Interestingly, such an agricultural field shows low CO2 and CH4 fluxes compared to the field affected by the backfilling of rice husk ash (RHA). This article suggests farmers not mix RHA to increase soil fertility because of their adverse environmental effects. Also, this study is relevant in understanding the GHGs’ emissions from paddy rice fields to the atmosphere, their impacts, and mitigating measures for a healthy ecosystem.

      

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870292.