Technological watch

New Automated Way to Produce Polymers for Chemical and Medical Applications

A Rutgers-led team of engineers has developed an automated way to produce polymers, making it much easier to create advanced materials aimed at improving human health.
Creating Large Libraries of Polymers in an Automated Way
The innovation is a critical step in pushing the limits for researchers who want to explore large libraries of polymers, including plastics and fibers, for chemical and biological applications such as drugs and regenerative medicine through tissue engineering.
384 Different Polymers at Once with Automation
While a human researcher may be able to make a few polymers a day, the new automated system – featuring custom software and a liquid-handling robot – can create up to 384 different polymers at once, a huge increase over current methods.
“Typically, researchers synthesize polymers in highly controlled environments, limiting the development of large libraries of complex materials,” said senior author Adam J. Gormley, an assistant professor in the department of biomedical engineering in the School of Engineering at Rutgers University. “By automating polymer synthesis and using a robotic platform, it is now possible to rapidly create a multitude of unique materials.”
Robotics Platform for Automatizing Polymer Discovery
Robotics has automated many ways to make materials as well as discover and develop drugs. But synthesizing polymers remains challenging because most chemical reactions are extremely sensitive to oxygen and can’t be done without removing it during production. The Gormley lab’s open-air robotics platform carries out polymer synthesis reactions that tolerate oxygen.
The group developed custom software that allows a liquid handling robot to interpret polymer designs made on a computer and carry out every step of the chemical reaction. One benefit: the new automated system makes it easier for non-experts to create polymers.
Applications in New Technologies
Synthetic polymers are widely used in advanced materials with special properties, and their continued development is crucial to new technologies.
Such technologies include:
  • Diagnostics
  • Medical devices
  • Electronics
  • Sensors
  • Robots
  • Lighting

Publication date: 09/01/2020

Omnexus (news)


This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870292.