Technological watch

Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties

This paper develops a technology for manufacturing a biocomposite using post-production wood waste as filler, but also as an alternative material that can substitute traditional composites. Three types of post-production wood waste, i.e., ash wood chips, oak chips and medium-density wood fiberboard (MDF), were used in this study. Three different biocomposites were produced for each of these materials, differing in the content of waste to polymer. The biodegradable and compostable bioplastic Mater-Bi (CF05S) was obtained using the pioneering proprietary technologies of Novamont company using starches, cellulose, vegetable oils and their combinations. Mater-Bi was used as the matrix of the composite, which, due to its chemical composition, allows the production of fully biodegradable composites. The physicochemical properties, such as static tensile, impact, water absorption and hardness, were investigated. The results provide the basis for a detailed analysis of the properties of the biocomposites and made it possible to accurately determine their properties. The results show that the optimal solution is the Mater-Bi biocomposite with 20 wt.% oak filler content, which shows the most favorable adhesion strength and water absorption. The research conducted here is in the context of issues related to sustainability and a circular economy, through waste management, as well as through the production of biodegradable construction products.

Publication date: 06/02/2024

Author: Dorota Czarnecka-Komorowska

Reference: doi: 10.3390/su16041370

MDPI (sustainability)

      

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870292.