The internet of things (IoT) paradigm has long been considered a key incentive to the Fourth Industrial Revolution with the potential to transform the way we live our lives. Yet its impact promises to be enhanced further through the integration of nanotechnology.
Image Credit: Ana Aguirre Perez/Shutterstock.com
The IoT is a system of interrelated physical objects embedded with sensors, antennas, processors, software, and other technologies to enable relevant data exchange over the internet. From pills to guided missiles, the scope of these devices is vast and looks set to grow; predictions for the number of IoT-connected devices in 2025 peak at 75 billion, with tens or possibly hundreds of zettabytes of generated data.
Facilitating such substantial predictions is the development of enabling technologies (including cloud computing and big data analytics) and various communication modes, termed IoT protocols. These protocols enable data exchange between the endpoint devices, such as sensors and the next piece of hardware in the connected environment. They include Bluetooth, Wi-Fi, ZigBee, and Near field communication (NFC) for short distances, low-power wide-area (LPWA) and 5G for long distances.
Arguably, one of the most fascinating developments lies in the integration of nanotechnology. This promises to extend the IoT concept to its fullest through nanodevices and give rise to a whole new IoT derivative, the internet of Nano-Things (IoNT).
NanodevicesAdopting nanomaterials within IoT devices can make use of their exceptionable properties to increase the functionality, energy efficiency and accuracy of the devices while reducing their size. Nanoantennas, nanoprocessors and nanobatteries are all examples of IoT nanodevices currently being utilized or developed, but within IoT endpoints, nanodevices have found the most use as nanosensors.
NanosensorsIoT sensors must monitor specific phenomena in sensing environments to provide relevant data for subsequent analysis. Nanosensors use a broad range of nanomaterials to achieve this and are capable of physical, chemical, and biological monitoring.
For example, Tang et al. (2019) developed a flexible nanowire-based sensor for real-time ammonia (NH3) monitoring. The sensor, developed to be used within a watch-type device, displayed a lower detection limit and faster response time than traditional NH3 sensors primarily due to the nanowires' extremely high surface area to volume ratio.
The remarkably low power consumption (as low as 3μW) and scalable soft lithography fabrication technique further support how nanomaterials can act to enhance IoT sensors realistically.
Similar nano-based advantages have been seen for non-invasive biosensors for continuous blood glucose monitoring and for chemical, microbe and other analyte monitoring in drinking water.
NanoantennasIoT antennas are responsible for the wireless communication of IoT devices by receiving, decoding and transmitting information via various wave types. Nanoantennas, often graphene-based, primarily achieve such a function by radiating in the terahertz frequency band.
Related Stories
- Nanotechnology Progress, Dangers and Widespread Hypocrisy, A Bioethics Essay By Dr Robert Sparrow From Monash University
- Nanotechnology and Developing Countries - Part 2: What Realities?
- Continue reading: Nanosensors: The Future Nano-Energy Harvesting Element.
References and Further ReadingSteward, J., (2021) The Ultimate List of Internet of Things Statistics for 2021. [online] Findstack. Available at: https://findstack.com/internet-of-things-statistics/
Tang, N., Zhou, C., Xu, L., Jiang, Y., Qu, H. and Duan, X., (2019) A Fully Integrated Wireless Flexible Ammonia Sensor Fabricated by Soft Nano-Lithography. ACS Sensors, 4(3), pp.726-732. Available at: https://pubs.acs.org/doi/10.1021/acssensors.8b01690
Chen, Y., Lu, S., Zhang, S., Li, Y., Qu, Z., Chen, Y., Lu, B., Wang, X. and Feng, X., (2017) Skin-like biosensor system via electrochemical channels for non-invasive blood glucose monitoring. Science Advances, 3(12). Available at: https://www.science.org/doi/10.1126/sciadv.1701629
Vikesland, P., (2018) Nanosensors for water quality monitoring. Nature Nanotechnology, 13(8), pp.651-660. Available at: https://www.nature.com/articles/s41565-018-0209-9
Akhtar, N. and Perwej, Y., (2020) The internet of nano things (IoNT) existing state and future Prospects. GSC Advanced Research and Reviews, 5(2), pp.131-150. Available at: http://dx.doi.org/10.30574/gscarr.2020.5.2.0110
Dume, I., (2018) Spray-on antennas for the Internet of Things. [online] Physics World. Available at: https://physicsworld.com/a/spray-on-antennas-for-the-internet-of-things/
Matheson, R., (2019) MIT engineers build advanced microprocessor out of carbon nanotubes. [online] MIT News | Massachusetts Institute of Technology. Available at: https://news.mit.edu/2019/carbon-nanotubes-microprocessor-0828
Soliman, W., Swathi, C., Yasasvi, T., Keerthi Priya, B. and Akhila Reddy, D., (2021) Review on poly(ethylene oxide)-based electrolyte and anode nanomaterials for the internet of things node-level lithium-ion batteries. Materials Today: Proceedings, 42, pp.429-435. Available at: https://www.sciencedirect.com/science/article/pii/S2214785320375581?via%3Dihub
Twentyman, J., (2019) Internet of things sparks race to replace the battery. [online] Financial Times. Available at: https://www.ft.com/content/3ba7fc12-8205-11e9-a7f0-77d3101896ec
Pajooh, H., Rashid, M., Alam, F. and Demidenko, S., (2021) Multi-Layer Blockchain-Based Security Architecture for Internet of Things. Sensors, 21(3), p.772. Available at: https://www.mdpi.com/1424-8220/21/3/772
Dash, S., Soni, G., Patnaik, A., Liaskos, C., Pitsillides, A. and Akyildiz, I., (2021) Switched-Beam Graphene Plasmonic Nanoantenna in the Terahertz Wave Region. Plasmonics, 16(5), pp.1855-1864. Available at: https://link.springer.com/article/10.1007/s11468-021-01449-y
Phillips, J., (2021) Energy Harvesting in Nanosystems: Powering the Next Generation of the Internet of Things. Frontiers in Nanotechnology, 3. Available at: https://www.frontiersin.org/articles/10.3389/fnano.2021.633931/full
Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.
$(function() { Azom.wireUpVideoThumbnailLazyLoading(); }); Written by
Lucas PodmoreLucas graduated from the University of Bristol with a Master’s degree in mechanical engineering. During his studies, Lucas found the enjoyment in sharing his lifelong passion for engineering and science through writing; completing research projects on 3D printing, thermal hydraulics and digital twins. Outside of work Lucas is a keen Formula 1 fan, tennis player and enjoys exploring Europe on his motorcycle.