Plastic degrading microorganisms: Opening an avenue to a sustainable world?

Dr Jasmina Nikodinovic-Runic

Plastic degrading microorganisms: Opening an avenue to a sustainable world?

Plastic Age

- Plastics Make it Possible: A remarkable material
- Propelled rapid recent human progress & revolutionised industries

car safety, firefighter gear, sunglasses, insulation, sports performance, space suits, medicine, electronics & IT.....

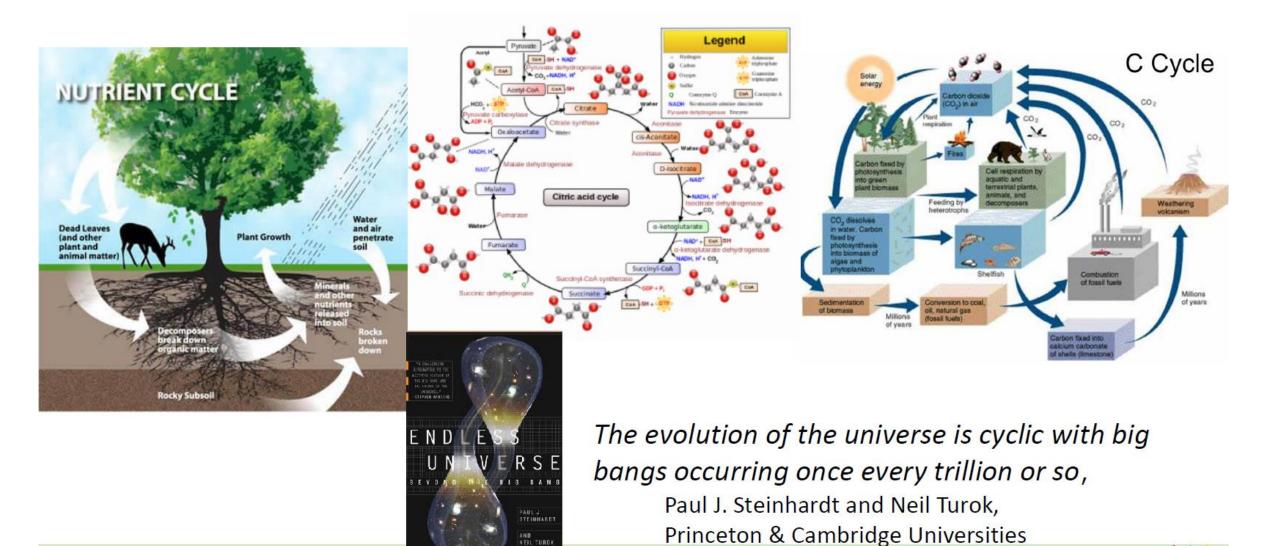
- High mechanical performance, safe, lightweight, durable yet maliable
- Achieved by intense scientific and engineering developments over recent decades
- Ideal packaging, convenient for consumers
- -Keeps food fresh & lets shoppers view items
- -Secures fragile items.
- Safe shatter & tamper proof
- Sports Performance
- -world's lightest soccer boots
- Plastics impact every part of modern cars, from performance to aesthetics make up 10% of vehicle's total weight, yet over 50 % of the volume.

Plastics: An Unfinished Technology

Petroleum –based plastics take 100s of years to degrade in soil & seawater ensuring a long-lasting blight on:

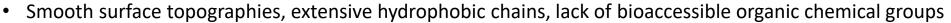
- -our oceans,
- -countryside
- -& newly recognised our food system

Bio Innovation of a Circular Economy for Plastics

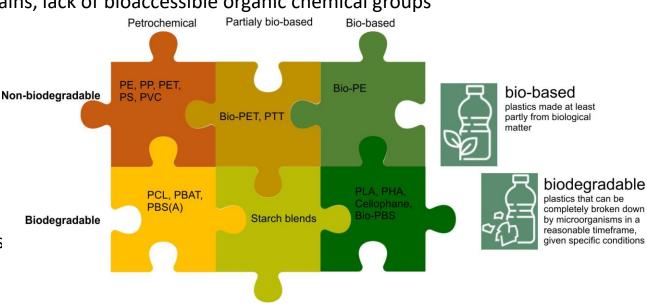

AL A STANDA

www.bioicep.eu

11

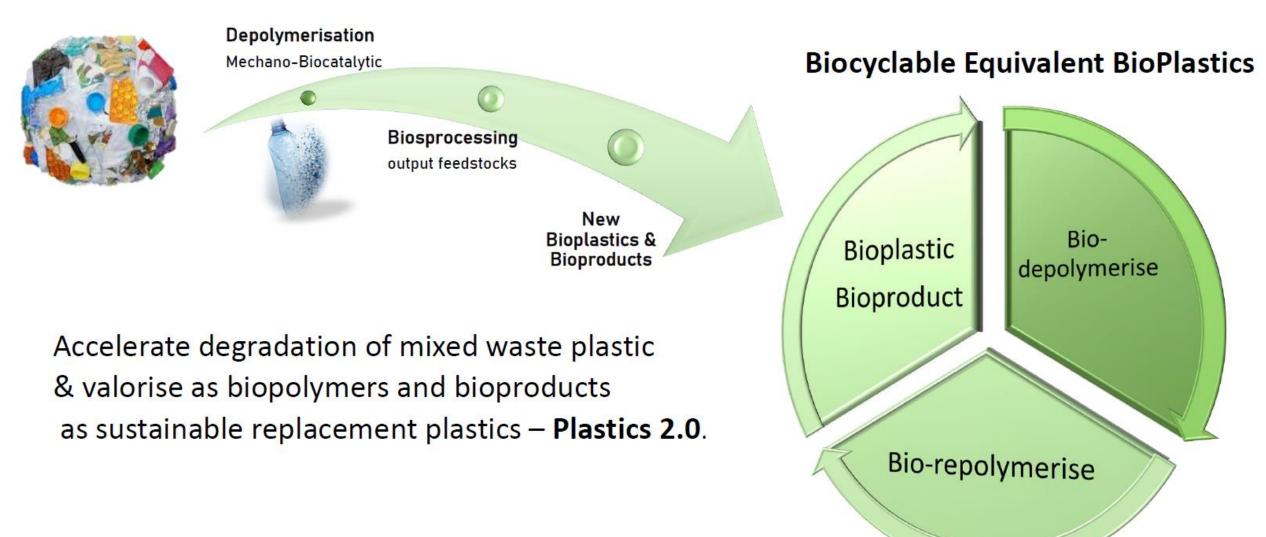

Plastics: Completing the Life Cycle

• Nature operates a myriad of elegant & efficient regenerative cycles

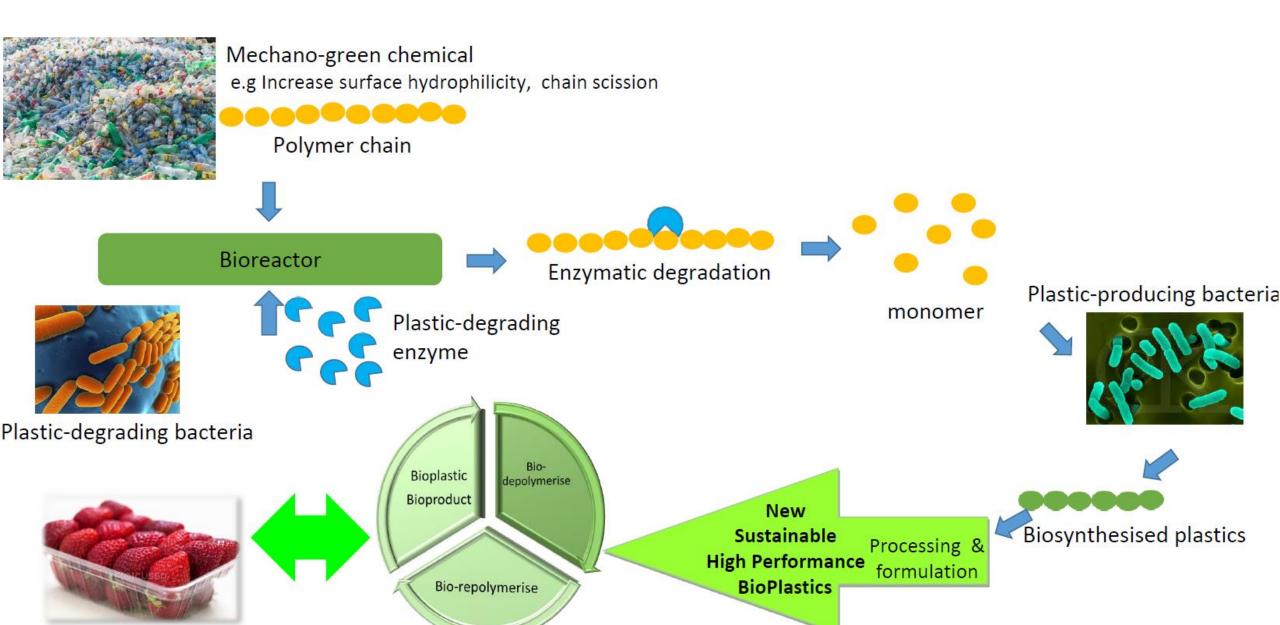


Challenges to completing the life cycle for plastics

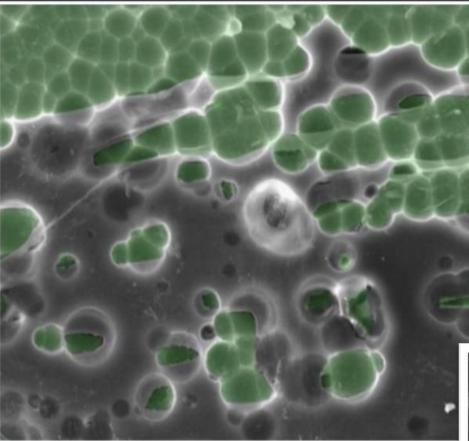
- **Recycling technologies and infrastructures**: Largely fail and are unlikely to hold the answer to sustainable management or effective revalorization of post use and end of life plastics.
 - Economically, conventional recycling only makes sense when clean material is available in high quantities with advanced systems for mixed stream sorting.
 - Collection logistics, management of intrinsic human behavior, and diminished mechanical performance on reprocessing, dictates that plastics can not be perpetually conventionally recycled.
- Recalcitrant nature of plastics: Strongly bio-inert and largely incompatible with bioprocessing



- **Bioplastics:** Not achieved wide acceptability by industry with current market penetration levels of just 2%
 - Incompatibility with existing sorting infrastructures and high temperature mechanical recycling
 - Raised costs are limiting factors.
 - Technical shortcomings, such as brittleness, lower gas barrier functions and processing performances
 - Mixed options available

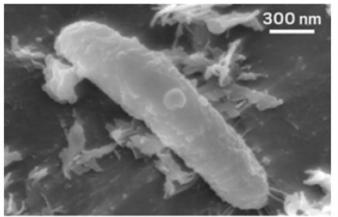

• Bio-recycling & regenerative technologies for current plastic materials?

Overarching BioICEP Approaches



Syphoning Recalcitrant Plastic into Bio Cyclable Plastics

Bio-depolymerization



IDEONELLA SAKAIENSIS (2016)

NEWLY DISCOVERED MICROBE

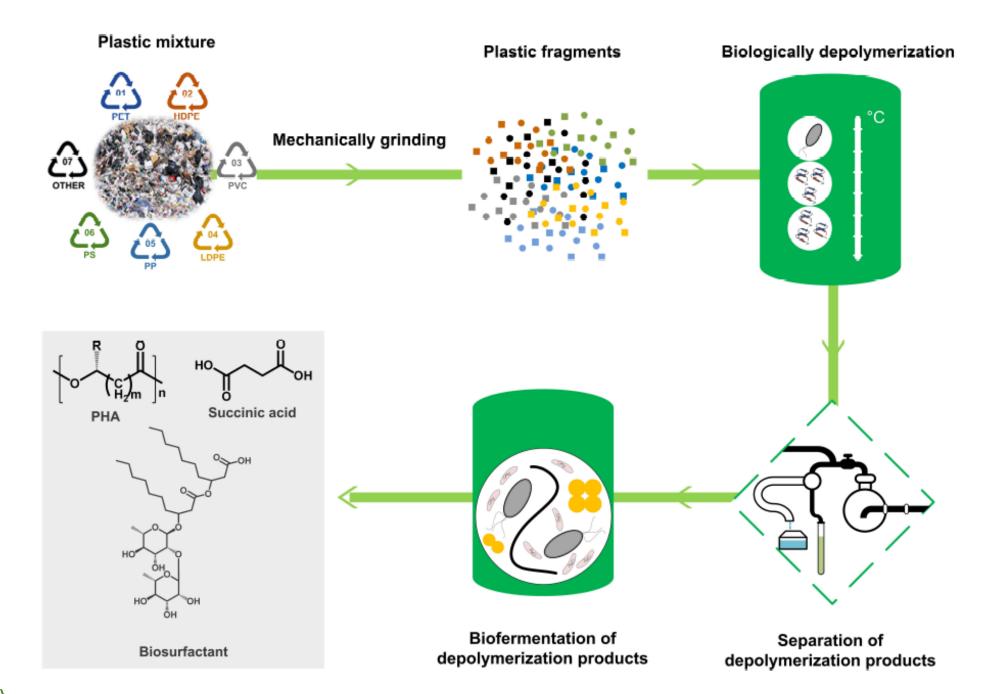
- SHRINK TIME PLASTIC TAKES TO DEGRADE
- FROM HUNDREDS OF YEARS ...

TO A FEW DAYS

Bacteria, fungi, and enzymes associated with polyethylene petrochemical plastic biodegradation

Enzyme	Isolated source	Tested PET	Crystallinity, %	Reaction temperature, °C	Incubation time, d	Weigh loss, %
TfH	Thermobifida fusca	PET bottle and pellets	9	55	21	54.2
HiC; PmC; PsC	Humicola insolens; Pseudomonas mendocina; Fusarium solani	Low-crystallinity PET film	7	70	6	97%
LC-cutinase	Compost metagenomic library	Low-crystallinity PET film	8.4	50	7	50
Cut190	Saccharomonospora viridis	Low-crystallinity PET film	8.4	63	3	27
IsPETase	Ideonella sakaiensis	Low-crystallinity PET film	1.9	30	0.75	-
<i>Is</i> PETase	Ideonella sakaiensis	Low-crystallinity PET film	-	30	1	1
TfCut2	Thermobifida fusca	Low-crystallinity PET chip	7	70	5	97

			Incubation	Weight	Molecular	Degradation
Strain/Enzyme	Isolated source	Tested PE	time, d	loss, %	weight	products
Rhodococcus ruber C208	Soil of disposal site	LDPE film	30	4	-	-
Bacillus sphericus Alt; Bacillus cereus BF20	Marine water	LDPE film	180	2.5–10	-	-
Arthrobacter sp. GMB5; Pseudomonas sp. GMB7	Plastic waste dumpsites	HDPE film	30	12-15	-	-
Pseudomonas sp. E4	Soil	LMWPE	80	-	-	-
Pseudomonas sp. AKS2	Waste dumping soil	LDPE film	45	5	-	-
Bacillus subtilis H1584	Marine water	LDPE film	30	1.75	-	-
Enterobacter asburiae YT1; Bacillus sp. YP1	Gut of waxworm	LDPE film	60	6–11	Decreased	Detected
Serratia marcescens	Ground soil	LLDPE film	70	36	-	-
Achromobacter xylosoxidans	Soil	HDPE film	150	9.38	-	-
Zalerion maritimum	Marine environment	PE pellets	28	-	-	-
Phormidium lucidum; Oscillatoria subbrevis	Domestic sewage water	LDPE film	42	-	-	-
Alcanivorax borkumensis	Mediterranean Sea	LDPE film	7	3.5	_	-
manganese peroxidase	Phanerochaete chrysosporium	PE film	12	-	Decreased	-
soybean peroxidase	Soybean	HDPE film	2 h	-	-	-
laccase	Rhodococcus ruber C208	LDPE film	30	2.5	Decreased	-
alkB gene	Pseudomonas sp. E4	LMWPE sheet	80	19.3	-	-
alkB1, alkB2 gene	Pseudomonas aeruginosa E7	LMWPE film	50	19.6-27.6	-	-


Strain/Enzyme	Isolated source	Tested PS	Incubation time, d	Weight loss, %	Molecular weight	Degradation products
Xanthomonas sp.; Sphingobacterium sp.; Bacillus sp. STR-YO	Field soil	PS film	8	40–56	-	-
Rhodococcus ruber C208	Soil of disposal site	PS film	56	0.8	-	-
<i>Microbacterium</i> sp. NA23; <i>Paenibacillus urinalis</i> NA26; <i>Bacillus</i> sp. NB6; <i>Pseudomonas aeruginosa</i> NB26	Soil buried expanded PS film	PS film	56	-	-	Detected
Rhizopus oryzae NA1; Aspergillus terreus NA2; Phanerochaete chrysosporium NA3	Soil buried expanded PS film	PS film	56	-	Increased	Detected
Exiguobacterium sp. YT2	Mealworm's gut	PS film	60	7.5%	Decreased	Detected
hydroquinone peroxidase	Azotobacter beijerinckii HM121	PS film	20 min	-	Decreased	Detected

Strain/Enzyme	Isolated source	Tested PP	Incubation time, d	Weight loss, %	Molecular weight	Degradation products
Pseudomonas stutzeri; Bacillus subtilis; Bacillus flexus	Plastic-dumping site	PP film	365	-	-	Detected
Phanerochaete chrysosporium; Engyodontium album	Plastic-dumping site	PP film	365	4–5	-	Detected
Stenotrophomonas panacihumi	Soil of waste storage yard	PP film	90	-	Increased	-
Aneurinibacillus aneurinilyticus; Brevibacillus agri; Brevibacillus sp.; Brevibacillus brevis	Landfills and sewage	PP film and pellets	140	22.8–27.0	-	Detected
Bacillus sp. strain 27; Rhodococcus sp. strain 36	Mangrove environments	PP microplastic	40	4-6.4	-	-

Strain/Enzyme	Isolated source	Tested PVC	Incubation time, d	Weight loss,%	Molecular weight	Degradation products
Alternaria sp. TOF-46	Japanese bathrooms	Plasticized PVC rim	180	-	-	-
Poliporus versicolor; Pleurotus sajor caju	Lignocellulosic waste	PVC film	30	-	-	Detected
Aureobasidium pullulans	Leaf/wood surfaces	Plasticized PVC	7	-	-	-
Aspergillus niger	PVC wires	Plasticized PVC film	365	-	-	-
Aureobasidium pullulans	Atmosphere	Plasticized PVC film	42	3.7	-	-
Penicillium janthinellum	PVC buried in soil	Plasticized PVC sheet	300	-	-	-
Mycobacterium sp. NK0301	Garden soil	Plasticized PVC film	3	-	-	Detected
Chryseomicrobium imtechense; Lysinibacillus fusiformis; Acinetobacter calcoaceticus; Stenotrophomonas pavanii	Landfill leachate	Plasticized PVC curtain	34	-	-	-
Phanerochaete chrysosporium; Lentinus tigrinus; Aspergillus niger; Aspergillus sydowii	PVC film buried in soil	PVC film	300	-	Decreased	Detected
Acanthopleurobacter pedis; Bacillus cereus; Pseudomonas otitidis; Bacillus aerius;	Plastic disposal sites	PVC film	90	-	Decreased	Detected
Bacillus sp. AllW2	Marine	Un-plasticized PVC film	90	0.26	-	Detected
Phanerocheate chrysosporium	Plastic disposal site	PVC film	28	31	-	Detected
Pseudomonas citronellolis	Soil	Plasticized PVC film	45	13	Decreased	-

(2020 - 2023)

FEMS ONLINE Conference on Microbiology 2020

in association with the Serbian Society of Microbiology

Federation of European Microbiological Societies

имгги

IMGG

Thanks!